Details

Handbook of Gasification Technology


Handbook of Gasification Technology

Science, Processes, and Applications
1. Aufl.

von: James G. Speight

217,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 19.03.2020
ISBN/EAN: 9781118773772
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Gasification is one of the most important advancements that has ever occurred in energy production.  Using this technology, for example, coal can be gasified into a product that has roughly half the carbon footprint of coal.  On a large scale, gasification could be considered a revolutionary development, not only prolonging the life of carbon-based fuels, but making them “greener” and cleaner.  As long as much of the world still depends on fossil fuels, gasification will be an environmentally friendlier choice for energy production.</p> <p>But gasification is not just used for fossil fuels.  Waste products that would normally be dumped into landfills or otherwise disposed of can be converted into energy through the process of gasification.  The same is true of biofeedstocks and other types of feedstocks, thus making another argument for the widespread use of gasification.</p> <p>The Handbook of Gasification Technology covers all aspects of the gasification, in a “one-stop shop,” from the basic science of gasification and why it is needed to the energy sources, processes, chemicals, materials, and machinery used in the technology.  Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.</p>
<p>Preface xiv</p> <p><b>Part 1: Synthesis Gas Production 1</b></p> <p><b>1 Energy Sources and Energy Supply 3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Typical Energy Sources 6</p> <p>1.2.1 Natural Gas and Natural Gas Hydrates 6</p> <p>1.2.2 The Crude Oil Family 7</p> <p>1.2.3 Extra Heavy Crude Oil and Tar Sand Bitumen 10</p> <p>1.3 Other Energy Sources 11</p> <p>1.3.1 Coal 12</p> <p>1.3.2 Oil Shale 14</p> <p>1.3.3 Biomass 16</p> <p>1.3.4 Solid Waste 19</p> <p>1.4 Energy Supply 22</p> <p>1.4.1 Economic Factors 22</p> <p>1.4.2 Geopolitical Factors 22</p> <p>1.4.3 Physical Factors 23</p> <p>1.4.4 Technological Factors 24</p> <p>1.5 Energy Independence 25</p> <p>References 29</p> <p><b>2 Overview of Gasification 35</b></p> <p>2.1 Introduction 35</p> <p>2.2 Gasification Processes 38</p> <p>2.2.1 Processes 40</p> <p>2.3 Feedstocks 41</p> <p>2.3.1 Influence of Feedstock Quality 48</p> <p>2.3.2 Feedstock Preparation 50</p> <p>2.3.2.1 Crushing/Sizing/Drying 51</p> <p>2.3.2.2 Pelletizing and Briquetting 51</p> <p>2.4 Power Generation 52</p> <p>2.5 Synthetic-Fuel Production 53</p> <p>2.5.1 Gaseous Products 54</p> <p>2.5.1.1 Synthesis Gas 54</p> <p>2.5.1.2 Low Btu Gas 55</p> <p>2.5.1.3 Medium Btu Gas 55</p> <p>2.5.1.4 High Heat-Content Gas 56</p> <p>2.5.2 Liquid Fuels 56</p> <p>2.5.3 Tar 57</p> <p>2.6 Advantages and Limitations 58</p> <p>2.7 Market Developments and Outlook 60</p> <p>References 62</p> <p><b>3 Gasifier Types- Designs and Engineering 67</b></p> <p>3.1 Introduction 67</p> <p>3.2 Gasifier Types 68</p> <p>3.2.1 Fixed Bed Gasifier 72</p> <p>3.2.2 Fluid Bed Gasifier 75</p> <p>3.2.3 Entrained Bed Gasifier 78</p> <p>3.2.4 Molten Salt Gasifier 79</p> <p>3.2.5 Plasma Gasifier 80</p> <p>3.2.6 Slagging Gasifier 82</p> <p>3.2.7 Other Types 83</p> <p>3.3 Designs 83</p> <p>3.3.1 General Design Aspects 84</p> <p>3.3.2 Chemical and Physical Aspects 85</p> <p>3.3.2.1 Chemical Aspects 85</p> <p>3.3.2.2 Influence of Feedstock Quality 86</p> <p>3.3.2.3 Mineral Matter Content 88</p> <p>3.3.2.4 Mixed Feedstocks 89</p> <p>3.3.2.5 Moisture Content 89</p> <p>3.3.3 Physical Effects 90</p> <p>3.3.3.1 Bulk Density 90</p> <p>3.3.3.2 Char Gasification 90</p> <p>3.3.3.3 Devolatilization and Volatile Matter Production 91</p> <p>3.3.3.4 Particle Size and Distribution 92</p> <p>3.4 Mechanism 92</p> <p>3.4.1 Primary Gasification 93</p> <p>3.4.2 Secondary Gasification 93</p> <p>3.4.3 Hydrogasification 94</p> <p>3.4.4 Catalytic Gasification 95</p> <p>3.5 Energy Balance 96</p> <p>3.6 Gasifier-Feedstock Compatibility 97</p> <p>3.6.1 Feedstock Reactivity 97</p> <p>3.6.2 Energy Content 98</p> <p>3.7 Products 99</p> <p>3.7.1 Gases 100</p> <p>3.7.2 Tar 102</p> <p>References 103</p> <p><b>4 Chemistry, Thermodynamics, and Kinetics 107</b></p> <p>4.1 Introduction 107</p> <p>4.2 Chemistry 108</p> <p>4.2.1 Pretreatment 109</p> <p>4.2.2 Gasification Reactions 110</p> <p>4.2.2.1 Primary Gasification 113</p> <p>4.2.2.2 Secondary Gasification 114</p> <p>4.2.2.3 Water Gas Shift Reaction 117</p> <p>4.2.2.4 Carbon Dioxide Gasification 118</p> <p>4.2.2.5 Hydrogasification 119</p> <p>4.2.2.6 Methanation 120</p> <p>4.2.2.7 Catalytic Gasification 121</p> <p>4.2.2.8 Effect of Process Parameters 122</p> <p>4.2.3 Physical Effects 122</p> <p>4.3 Thermodynamics and Kinetics 124</p> <p>4.3.1 Thermodynamics 126</p> <p>4.3.2 Kinetics 127</p> <p>4.4 Products 128</p> <p>4.4.1 Gaseous Products 131</p> <p>4.4.1.1 Low Btu Gas 132</p> <p>4.4.1.2 Medium Btu Gas 133</p> <p>4.4.1.3 High Btu Gas 134</p> <p>4.4.1.4 Synthesis Gas 134</p> <p>4.4.2 Liquid Products 135</p> <p>4.4.3 Tar 136</p> <p>4.4.4 Soot 136</p> <p>4.4.5 Char 137</p> <p>4.4.6 Slag 138</p> <p>References 138</p> <p><b>Part 2: Process Feedstocks 141</b></p> <p><b>5 Coal Gasification 143</b></p> <p>5.1 Introduction 143</p> <p>5.2 Coal Types and Reactions 147</p> <p>5.2.1 Types 148</p> <p>5.2.2 Reactions 149</p> <p>5.2.3 Properties 151</p> <p>5.3 Processes 152</p> <p>5.3.1 Coal Devolatilization 154</p> <p>5.3.2 Char Gasification 154</p> <p>5.3.3 Gasification Chemistry 155</p> <p>5.3.4 Other Process Options 156</p> <p>5.3.4.1 Hydrogasification 157</p> <p>5.3.4.2 Catalytic Gasification 157</p> <p>5.3.4.3 Plasma Gasification 158</p> <p>5.3.5 Process Optimization 158</p> <p>5.4 Product Quality 160</p> <p>5.4.1 Low Btu Gas 160</p> <p>5.4.2 Medium Btu Gas 161</p> <p>5.4.3 High Btu Gas 161</p> <p>5.4.4 Methane 162</p> <p>5.4.5 Hydrogen 162</p> <p>5.4.6 Other Products 163</p> <p>5.5 Chemicals Production 164</p> <p>5.5.1 Coal Tar Chemicals 164</p> <p>5.5.2 Fischer-Tropsch Chemicals 166</p> <p>5.5.2.1 Fischer-Tropsch Catalysts 167</p> <p>5.5.2.2 Product Distribution 168</p> <p>5.6 Advantages and Limitations 168</p> <p>References 169</p> <p><b>6 Gasification of Viscous Feedstock 173</b></p> <p>6.1 Introduction 173</p> <p>6.2 Viscous Feedstocks 177</p> <p>6.2.1 Crude Oil Resids 178</p> <p>6.2.2 Heavy Crude Oil 180</p> <p>6.2.3 Extra Heavy Crude Oil 180</p> <p>6.2.4 Tar Sand Bitumen 181</p> <p>6.2.5 Other Feedstocks 182</p> <p>6.2.5.1 Crude Oil Coke 183</p> <p>6.2.5.2 Solvent Deasphalter Bottoms 185</p> <p>6.2.5.3 Asphalt, Tar, and Pitch 187</p> <p>6.3 Gas Production 188</p> <p>6.3.1 Partial Oxidation Technology 189</p> <p>6.3.1.1 Shell Gasification Process 191</p> <p>6.3.1.2 Texaco Process 191</p> <p>6.3.1.3 Phillips Process 192</p> <p>6.3.2 Catalytic Partial Oxidation 192</p> <p>6.4 Products 193</p> <p>6.4.1 Gas Purification and Quality 194</p> <p>6.4.2 Process Optimization 195</p> <p>6.5 Advantages and Limitations 195</p> <p>References 198</p> <p><b>7 Gasification of Biomass 201</b></p> <p>7.1 Introduction 201</p> <p>7.2 Biomass Types and Mixed Feedstocks 205</p> <p>7.2.1 Biomass 205</p> <p>7.2.2 Black Liquor 209</p> <p>7.2.3 Mixed Feedstocks 210</p> <p>7.2.3.1 Biomass with Coal 211</p> <p>7.2.3.2 Biomass with Waste 213</p> <p>7.3 Chemistry 214</p> <p>7.3.1 General Aspects 215</p> <p>7.3.2 Reactions 218</p> <p>7.3.2.1 Water Gas Shift Reaction 222</p> <p>7.3.2.2 Carbon Dioxide Gasification 222</p> <p>7.3.2.3 Hydrogasification 223</p> <p>7.3.2.4 Methanation 224</p> <p>7.4 Gasification Processes 225</p> <p>7.4.1 Gasifiers 226</p> <p>7.4.2 Fischer-Tropsch Synthesis 231</p> <p>7.5 Gas Production and Products 232</p> <p>7.5.1 Gas Production 233</p> <p>7.5.2 Products 234</p> <p>7.5.2.1 Synthesis Gas 235</p> <p>7.5.2.2 Low-Btu Gas 236</p> <p>7.5.2.3 Medium-Btu Gas 237</p> <p>7.5.2.4 High-Btu Gas 237</p> <p>7.5.3 Liquid Products 238</p> <p>7.5.4 Solid Products 239</p> <p>7.6 The Future 240</p> <p>References 243</p> <p><b>8 Gasification of Waste 249</b></p> <p>8.1 Introduction 249</p> <p>8.2 Waste Types 251</p> <p>8.2.1 Solid Waste 251</p> <p>8.2.2 Municipal Solid Waste 252</p> <p>8.2.3 Industrial Solid Waste 253</p> <p>8.2.4 Biosolids 254</p> <p>8.2.5 Biomedical Waste 254</p> <p>8.2.6 Mixed Feedstocks 255</p> <p>8.3 Feedstock Properties and Plant Safety 255</p> <p>8.4 Fuel Production 256</p> <p>8.4.1 Pre-Processing 257</p> <p>8.4.2 Gasifier Types 259</p> <p>8.4.2.1 Counter-Current Fixed Bed Gasifier 259</p> <p>8.4.2.2 Co-Current Fixed Bed Gasifier 259</p> <p>8.4.2.3 Fluidized Bed Gasifier 260</p> <p>8.4.2.4 Entrained Flow Gasifier 260</p> <p>8.4.2.5 Other Types 261</p> <p>8.4.3 Process Design 262</p> <p>8.4.4 Plasma Gasification 263</p> <p>8.5 Process Products 264</p> <p>8.5.1 Synthesis Gas 264</p> <p>8.5.2 Carbon Dioxide 265</p> <p>8.5.3 Tar 265</p> <p>8.5.4 Particulate Matter 267</p> <p>8.5.5 Halogens/Acid Gases 267</p> <p>8.5.6 Heavy Metals 268</p> <p>8.5.7 Alkalis 269</p> <p>8.5.8 Slag 269</p> <p>8.6 Advantages and Limitation 270</p> <p>References 271</p> <p><b>9 Gas Cleaning 275</b></p> <p>9.1 Introduction 275</p> <p>9.2 Gas Streams 277</p> <p>9.3 Water Removal 282</p> <p>9.3.1 Absorption 282</p> <p>9.3.2 Adsorption 283</p> <p>9.3.3 Cryogenics 285</p> <p>9.4 Acid Gas Removal 285</p> <p>9.4.1 Adsorption 287</p> <p>9.4.2 Absorption 288</p> <p>9.4.3 Chemisorption 289</p> <p>9.4.4 Other Processes 294</p> <p>9.5 Removal of Condensable Hydrocarbons 297</p> <p>9.5.1 Extraction 299</p> <p>9.5.2 Absorption 300</p> <p>9.5.3 Fractionation 300</p> <p>9.5.4 Enrichment 301</p> <p>9.6 Tar Removal 302</p> <p>9.6.1 Physical Methods 302</p> <p>9.6.2 Thermal Methods 304</p> <p>9.7 Particulate Matter Removal 304</p> <p>9.7.1 Cyclones 304</p> <p>9.7.2 Electrostatic Precipitators 305</p> <p>9.7.3 Granular-Bed Filters 305</p> <p>9.7.4 Wet Scrubbers 306</p> <p>9.8 Other Contaminant Removal 306</p> <p>9.8.1 Nitrogen Removal 307</p> <p>9.8.2 Ammonia Removal 308</p> <p>9.8.3 Siloxane Removal 308</p> <p>9.8.4 Alkali Metal Salt Removal 309</p> <p>9.8.5 Biological Methods 309</p> <p>9.8.5.1 Biofiltration 310</p> <p>9.8.5.2 Bioscrubbing 312</p> <p>9.8.5.3 Bio-Oxidation 313</p> <p>9.9 Tail Gas Cleaning 313</p> <p>9.9.1 Claus Process 314</p> <p>9.9.2 SCOT Process 315</p> <p>References 316</p> <p><b>Part 3: Applications 321</b></p> <p><b>10 Gasification in a Refinery 323</b></p> <p>10.1 Introduction 323</p> <p>10.2 Processes and Feedstocks 324</p> <p>10.2.1 Gasification of Residua 327</p> <p>10.2.2 Gasification of Residua with Coal 328</p> <p>10.2.3 Gasification of Residua with Biomass 328</p> <p>10.2.4 Gasification of Residua with Waste 330</p> <p>10.3 Synthetic Fuel Production 332</p> <p>10.3.1 Fischer-Tropsch Synthesis 334</p> <p>10.3.2 Fischer Tropsch Liquids 334</p> <p>10.3.3 Upgrading Fischer-Tropsch Liquids 336</p> <p>10.3.3.1 Gasoline Production 338</p> <p>10.3.3.2 Diesel Production 339</p> <p>10.4 Sabatier-Senderens Process 340</p> <p>10.4.1 Methanol Production 341</p> <p>10.4.2 Dimethyl Ether Production 342</p> <p>10.5 The Future 344</p> <p>References 347</p> <p><b>11 Hydrogen Production 353</b></p> <p>11.1 Introduction 353</p> <p>11.2 Processes Requiring Hydrogen 359</p> <p>11.2.1 Hydrotreating 360</p> <p>11.2.2 Hydrocracking 361</p> <p>11.3 Feedstocks 362</p> <p>11.4 Process Chemistry 362</p> <p>11.5 Commercial Processes 364</p> <p>11.5.1 Autothermal Reforming 365</p> <p>11.5.2 Combined Reforming 366</p> <p>11.5.3 Dry Reforming 367</p> <p>11.5.4 Steam-Methane Reforming 367</p> <p>11.5.5 Steam-Naphtha Reforming 370</p> <p>11.6 Catalysts 370</p> <p>11.6.1 Reforming Catalysts 371</p> <p>11.6.2 Shift Conversion Catalysts 372</p> <p>11.6.3 Methanation Catalysts 373</p> <p>11.7 Hydrogen Purification 373</p> <p>11.7.1 Cryogenic Separation 374</p> <p>11.7.2 Desiccant Separation Systems 374</p> <p>11.7.3 Membrane Separation Systems 374</p> <p>11.7.4 Pressure Swing Adsorption Separation Systems 375</p> <p>11.7.5 Wet Scrubbing Systems 376</p> <p>11.8 Hydrogen Management 376</p> <p>References 377</p> <p><b>12 Fischer-Tropsch Process 381</b></p> <p>12.1 Introduction 381</p> <p>12.2 History and Development of the Process 385</p> <p>12.3 Synthesis Gas 388</p> <p>12.4 Production of Synthesis Gas 391</p> <p>12.4.1 Feedstocks 393</p> <p>12.4.2 Product Distribution 396</p> <p>12.5 Process Parameters 397</p> <p>12.6 Reactors and Catalysts 400</p> <p>12.6.1 Reactors 400</p> <p>12.6.2 Catalysts 402</p> <p>12.7 Products and Product Quality 406</p> <p>12.7.1 Products 407</p> <p>12.7.2.1 Gases 407</p> <p>12.7.1.2 Liquids 407</p> <p>12.7.2 Product Quality 412</p> <p>12.7.3 Upgrading Fischer-Tropsch Liquids 415</p> <p>12.8 Fischer-Tropsch Chemistry 415</p> <p>12.8.1 Chemical Principles 416</p> <p>12.8.2 Refining Fischer-Tropsch Products 421</p> <p>References 423</p> <p><b>13 Fuels and Chemicals Production 427</b></p> <p>13.1 Introduction 427</p> <p>13.2 Historical Aspects and Overview 438</p> <p>13.3 The Petrochemical Industry 440</p> <p>13.4 Petrochemicals 445</p> <p>13.4.1 Primary Petrochemicals 446</p> <p>13.4.2 Products 447</p> <p>13.4.3 Gaseous Fuels and Chemicals 453</p> <p>13.4.3.1 Ammonia 453</p> <p>13.4.3.2 Hydrogen 454</p> <p>13.4.3.3 Synthetic Natural Gas 455</p> <p>13.4.4 Liquid Fuels and Chemicals 455</p> <p>13.4.4.1 Fischer-Tropsch Liquids 455</p> <p>13.4.4.2 Methanol 456</p> <p>13.4.4.3 Dimethyl Ether 456</p> <p>13.4.4.4 Methanol-to-Gasoline and Olefins 456</p> <p>13.4.4.5 Other Chemicals 457</p> <p>13.5 The Future 457</p> <p>References 463</p> <p><b>14 Gasification – A Process for Now and the Future 467</b></p> <p>14.1 Introduction 467</p> <p>14.2 Applications and Products 468</p> <p>14.2.1 Chemicals and Fertilizers 468</p> <p>14.2.2 Substitute Natural Gas 469</p> <p>14.2.3 Hydrogen for Crude Oil Refining 470</p> <p>14.2.4 Transportation Fuels 470</p> <p>14.2.5 Transportation Fuels from Tar Sand Bitumen 471</p> <p>14.2.6 Power Generation 472</p> <p>14.2.7 Waste-to-Energy 473</p> <p>14.2.8 Biomass to Chemicals and Fuels 473</p> <p>14.3 Environmental Benefits 475</p> <p>14.3.1 Carbon Dioxide 476</p> <p>14.3.2 Air Emissions 476</p> <p>14.3.3 Solids Generation 477</p> <p>14.3.4 Water Use 477</p> <p>14.4 Gasification – The Future 477</p> <p>14.4.1 The Process 478</p> <p>14.4.2 Refinery of the Future 479</p> <p>14.4.3 Economic Aspects 480</p> <p>14.4.4 Market Outlook 481</p> <p>14.5 Market Development 482</p> <p>14.6 Outlook 483</p> <p>References 485</p> <p>Coversion Factors 487</p> <p>Glossary 491</p> <p>About the Author 519</p> <p>Index 521</p>
<p><b>James G. Speight,</b> PhD, has more than forty-five years of experience in energy, environmental science, and ethics. He is the author of more than 65 books in petroleum science, petroleum engineering, biomass and biofuels, and environmental sciences. Although he has always worked in private industry which focused on contract-based work, Dr. Speight has served as Adjunct Professor in the Department of Chemical and Fuels Engineering at the University of Utah and in the Departments of Chemistry and Chemical and Petroleum Engineering at the University of Wyoming. In addition, he was a Visiting Professor in the College of Science, University of Mosul, Iraq and has also been a Visiting Professor in Chemical Engineering at the University of Missouri-Columbia, the Technical University of Denmark, and the University of Trinidad and Tobago.
<p><b>Written by one of the world's foremost petroleum engineers, this is the most comprehensive and up-to-date handbook on gasification technology, covering every aspect of the subject, including energy sources, equipment, processes, applications, and the science of gasifying all types of feedstocks in an effort to reduce the world's carbon footprint.</b> <p>Gasification is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal can be gasified into a product that has roughly half the carbon footprint of coal. On a large scale, gasification could be considered a revolutionary development, not only prolonging the life of carbon-based fuels, but making them "greener" and cleaner. As long as much of the world still depends on fossil fuels, gasification will be an environmentally friendlier choice for energy production. <p>But gasification is not just used for fossil fuels. Waste products that would normally be dumped into landfills or otherwise disposed of can be converted into energy through the process of gasification. The same is true of biofeedstocks and other types of feedstocks, thus making another argument for the widespread use of gasification. <p>The<b><i> Handbook of Gasification Technology</i></b> covers all aspects of the gasification, in a "one-stop shop," from the basic science of gasification and why it is needed to the energy sources, processes, chemicals, materials, and machinery used in the technology. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library. <p><b>This groundbreaking new volume:</b> <ul> <li>Lays the groundwork for understanding the need for gasification across all areas of the energy sector and how this technology can reduce our carbon footprint</li> <li>Offers a thorough and comprehensive description of the basic science of gasification technology</li> <li>Thoroughly covers the equipment and processes of gasification, including gasifier types, feedstocks, chemicals, and much more</li> <li>Is a valuable reference for engineers and scientists</li> <li>Is the perfect textbook for students studying petroleum, process, or chemical engineering</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Uncertainty in the Electric Power Industry
Uncertainty in the Electric Power Industry
von: Christoph Weber
PDF ebook
106,99 €
Interfacial Transport Phenomena
Interfacial Transport Phenomena
von: John C. Slattery, Leonard Sagis, Eun-Suok Oh
PDF ebook
213,99 €
Constructal Theory of Social Dynamics
Constructal Theory of Social Dynamics
von: Adrian Bejan, Gilbert W. Merkx
PDF ebook
213,99 €