Details

Indoor Positioning


Indoor Positioning

Technologies and Performance
IEEE Press 1. Aufl.

von: Nel Samama

112,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 21.06.2019
ISBN/EAN: 9781119421863
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides technical and scientific descriptions of potential approaches used to achieve indoor positioning, ranging from sensor networks to more advanced radio-based systems</b></p> <p>This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given.</p> <p><i>Indoor Positioning: Technologies and Performance</i> starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered—as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text:</p> <ul> <li>Explores aspects of indoor positioning from both theoretical and practical points of view</li> <li>Describes advantages and drawbacks of various approaches to positioning</li> <li>Provides examples of design solutions that respect specifications of tested techniques</li> <li>Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more</li> </ul> <p><i>Indoor Positioning</i> is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.</p>
<p>Preface xi</p> <p>Acknowledgments xiii</p> <p>Introduction xv</p> <p><b>1 A Little Piece of History… </b><b>1</b></p> <p>1.1 The First Age of Navigation 1</p> <p>1.2 Longitude Problem and Importance of Time 2</p> <p>1.3 Link Between Time and Space 4</p> <p>1.3.1 A Brief History of the Evolution of the Perception of Time 4</p> <p>1.3.2 Comparison with the Possible Change in Our Perception of Space 6</p> <p>1.4 The Radio Age 8</p> <p>1.5 First Terrestrial Positioning Systems 9</p> <p>1.6 The Era of Artificial Satellites 11</p> <p>1.6.1 GPS System 13</p> <p>1.7 New Problem: Availability and Accuracy of Positioning Systems 14</p> <p>Bibliography 15</p> <p><b>2 What Exactly Is the Indoor Positioning Problem? </b><b>17</b></p> <p>2.1 General Introduction to Indoor Positioning 18</p> <p>2.1.1 Basic Problem: Example of the Navigation Application 19</p> <p>2.1.2 The “Perceived” Needs 20</p> <p>2.1.3 Wide Range of Possible Technologies 22</p> <p>2.1.4 Comments on the “Best” Solution 25</p> <p>2.1.4.1 Local or Global Coverage 26</p> <p>2.1.4.2 With orWithout Local Infrastructure 27</p> <p>2.2 Is Indoor Positioning the Next “Longitude Problem”? 27</p> <p>2.3 Quick Summary of the Indoor Problem 30</p> <p>Bibliography 31</p> <p><b>3 General Introduction to Positioning Techniques and Their Associated Difficulties </b><b>33</b></p> <p>3.1 Angle-Based Positioning Technique 33</p> <p>3.1.1 Pure Angle-Based Positioning Technique 33</p> <p>3.1.2 Triangulation-Based Positioning Technique 34</p> <p>3.2 Distance-Based Positioning Technique 35</p> <p>3.2.1 Distances to Known Environment-Based Positioning Technique 35</p> <p>3.2.2 Radar Method 36</p> <p>3.2.3 Hyperbolic Method 38</p> <p>3.2.4 Mobile Telecommunication Networks 38</p> <p>3.3 Doppler-Based Positioning Approach 40</p> <p>3.3.1 Doppler Radar Method 40</p> <p>3.3.2 Doppler Positioning Approach 41</p> <p>3.4 Physical Quantity-Based Positioning Approaches 42</p> <p>3.4.1 Luminosity Measurements 42</p> <p>3.4.2 Local Networks 42</p> <p>3.4.3 Attitude and Heading Reference System 45</p> <p>3.4.3.1 Accelerometers 46</p> <p>3.4.3.2 Gyrometers 47</p> <p>3.4.3.3 Odometers 47</p> <p>3.4.3.4 Magnetometers 48</p> <p>3.5 Image-Based Positioning Approach 49</p> <p>3.6 ILS, MLS, VOR, and DME 49</p> <p>3.7 Summary 51</p> <p>Bibliography 52</p> <p><b>4 Various Possible Classifications of Indoor Technologies </b><b>55</b></p> <p>4.1 Introduction 55</p> <p>4.2 Parameters to Be Considered 56</p> <p>4.3 Discussion About These Parameters 57</p> <p>4.3.1 Parameters Related to the Hardware of the System 57</p> <p>4.3.2 Parameters Related to the Type and Performances of the System 58</p> <p>4.3.3 Parameters Related to the Real Implementation of the System 59</p> <p>4.3.4 Parameters Related to the Physical Aspects of the System 60</p> <p>4.4 Technologies Considered 63</p> <p>4.5 Complete Tables 71</p> <p>4.6 Playing with the Complete Table 79</p> <p>4.7 Selected Approach for the Rest of the Book 88</p> <p>Bibliography 99</p> <p><b>5 Proximity Technologies: Approaches, Performance, and Limitations </b><b>103</b></p> <p>5.1 Bar Codes 103</p> <p>5.2 Contactless Cards and Credit Cards 107</p> <p>5.3 Image Recognition 109</p> <p>5.4 Near-Field Communication – NFC 112</p> <p>5.5 QR Codes 114</p> <p>5.6 Discussion of Other Technologies 117</p> <p>Bibliography 118</p> <p><b>6 Room-Restricted Technologies: Challenges and Reliability </b><b>121</b></p> <p>6.1 Image Markers 121</p> <p>6.2 Infrared Sensors 129</p> <p>6.3 Laser 130</p> <p>6.4 Lidar 133</p> <p>6.5 Sonar 136</p> <p>6.6 Ultrasound Sensors 138</p> <p>Bibliography 140</p> <p><b>7 “Set of Rooms” Technologies </b><b>145</b></p> <p>7.1 Radar 145</p> <p>7.2 RFID 149</p> <p>7.3 UWB 152</p> <p>Bibliography 156</p> <p><b>8 Building Range Technologies </b><b>159</b></p> <p>8.1 Accelerometer 159</p> <p>8.2 Bluetooth and Bluetooth Low Energy 163</p> <p>8.3 Gyrometer 167</p> <p>8.4 Image-Relative Displacement 169</p> <p>8.5 Image SLAM 171</p> <p>8.6 LiFi 171</p> <p>8.7 Light Opportunity 174</p> <p>8.8 Sound 176</p> <p>8.9 Theodolite 177</p> <p>8.10 WiFi 180</p> <p>8.11 Symbolic WiFi 182</p> <p>Bibliography 187</p> <p><b>9 Building Range Technologies: The Specific Case of Indoor GNSS </b><b>191</b></p> <p>9.1 Introduction 191</p> <p>9.2 Concept of Local Transmitters 193</p> <p>9.3 Pseudolites 194</p> <p>9.4 Repeaters 198</p> <p>9.4.1 Clock Bias Approach 199</p> <p>9.4.2 Pseudo Ranges Approach 202</p> <p>9.4.2.1 Theoretical Aspects 202</p> <p>9.5 Repealites 206</p> <p>9.5.1 Proposed System Architecture 206</p> <p>9.5.2 Advantages 208</p> <p>9.5.3 Limitations 209</p> <p>9.6 Grin-Locs 209</p> <p>9.6.1 Double Antenna 210</p> <p>9.6.1.1 Angle Approach 210</p> <p>9.6.1.2 Quadrics Approach 211</p> <p>9.6.2 Resolution in Case of Several Double Antennas 213</p> <p>9.6.2.1 Positioning with the Angle Approach 213</p> <p>9.6.2.2 Positioning with the Quadric Approach 214</p> <p>Bibliography 216</p> <p><b>10 Wide Area Indoor Positioning: Block, City, and County Approaches </b><b>223</b></p> <p>10.1 Introduction 223</p> <p>10.2 Amateur Radio 225</p> <p>10.3 ISM Radio Bands (433/868/…MHz) 226</p> <p>10.4 Mobile Networks 227</p> <p>10.4.1 First Networks (GSM) 227</p> <p>10.4.2 Modern Networks (3G, 4G, and 5G) 232</p> <p>10.5 LoRa and SigFox 234</p> <p>10.6 AM/FM Radio 236</p> <p>10.7 TV 237</p> <p>Bibliography 239</p> <p><b>11 Worldwide Indoor Positioning Technologies: Achievable Performance </b><b>241</b></p> <p>11.1 Argos and COSPAS-SARSAT Systems 241</p> <p>11.1.1 Argos System 241</p> <p>11.1.2 COSPAS-SARSAT System 244</p> <p>11.2 GNSS 246</p> <p>11.3 High-Accuracy GNSS 248</p> <p>11.3.1 HS-GNSS 249</p> <p>11.3.2 A-GNSS 251</p> <p>11.4 Magnetometer 253</p> <p>11.5 Pressure Sensor 256</p> <p>11.6 Radio Signals of Opportunity 258</p> <p>11.7 Wired Networks 259</p> <p>Bibliography 261</p> <p><b>12 Combining Techniques and Technologies </b><b>267</b></p> <p>12.1 Introduction 267</p> <p>12.2 Fusion and Hybridization 269</p> <p>12.2.1 Strategies for Combining Technologies 269</p> <p>12.2.2 Strategies for Choosing the Optimal Data 270</p> <p>12.2.2.1 Least Squares Method 273</p> <p>12.2.3 Classification and Estimators 274</p> <p>12.2.4 Filtering 275</p> <p>12.3 Collaborative Approaches 276</p> <p>12.3.1 Approach Using DopplerMeasurements to Estimate Velocities 276</p> <p>12.3.2 Approach Using DopplerMeasurements in Case Some Nodes Are Fixed 280</p> <p>12.3.3 Approach Using DopplerMeasurements to Estimate Angles 282</p> <p>12.3.4 Approach Using Distance Measurements 285</p> <p>12.3.5 Approach Analyzing the Deformation of the Network 287</p> <p>12.3.6 Comments 288</p> <p>12.4 General Discussion 290</p> <p>Bibliography 291</p> <p><b>13 Maps </b><b>295</b></p> <p>13.1 Map: Not Just an Image 296</p> <p>13.2 Indoor Poses Specific Problems 297</p> <p>13.3 Map Representations 298</p> <p>13.4 Recording Tools 301</p> <p>13.5 Some Examples of the Use of Indoor Mapping 304</p> <p>13.5.1 Some Guiding Applications 305</p> <p>13.5.2 Some Services Associated with Mapping 306</p> <p>13.6 Synthesis 308</p> <p>Bibliography 308</p> <p><b>14 Synthesis and Possible Forthcoming “Evolution” </b><b>311</b></p> <p>14.1 Indoor Positioning: Signals of Opportunity or Local Infrastructure? 312</p> <p>14.1.1 A Few Constrained Selections 312</p> <p>14.1.2 Comparison of Three Approaches and Discussion 315</p> <p>14.1.2.1 Inverted GNSS Radar 315</p> <p>14.1.2.2 NFC-Distributed System and Its Map 316</p> <p>14.1.2.3 Cooperative Approach Between Communicating Terminals 317</p> <p>14.2 Discussion 319</p> <p>14.3 Possible Evolution of Everybody’s Daily Life 321</p> <p>14.3.1 Student’s Day 321</p> <p>14.3.1.1 Morning Session at the University 322</p> <p>14.3.2 Improving an Outpatient’s Visit to Hospital 323</p> <p>14.3.2.1 Preparation of the “Journeys” 323</p> <p>14.3.2.2 Displacements of Patients and Automatic Rescheduling 323</p> <p>14.3.2.3 Reports – Analytics 323</p> <p>14.3.3 Flow of People in Public Places 325</p> <p>14.4 Internet of Things and Internet of Everything 326</p> <p>14.5 Possible Future Approaches 327</p> <p>14.6 Conclusion 330</p> <p>Bibliography 331</p> <p>Index 333</p>
<p><b>Nel Samama, PhD,</b> is Professor in the Electronics and Physics Department at the Institut Telecom (France) where he is leading the navigation group. His previous book, "Global Positioning: Technologies and Performance" (Wiley, 2008), provided detailed descriptions of geographical positioning solutions with a particular focus on radio solutions. His work on innovative indoor positioning solutions has led to ten patents as well as numerous publications.
<p><b>Provides Technical and Scientific Descriptions of Potential Approaches Used to Achieve Indoor Positioning, Ranging from Sensor Networks to More Advanced Radio-Based Systems</b> <p>This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given. <p><i>Indoor Positioning: Technologies and Performance</i> starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered—as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text: <ul> <li>Explores aspects of indoor positioning from both theoretical and practical points of view</li> <li>Describes advantages and drawbacks of various approaches to positioning</li> <li>Provides examples of design solutions that respect specifications of tested techniques</li> <li>Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more</li> </ul> <p><i>Indoor Positioning</i> is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.

Diese Produkte könnten Sie auch interessieren:

Pulsed Power
Pulsed Power
von: Gennady A. Mesyats
PDF ebook
309,23 €
High-Frequency Oscillator Design for Integrated Transceivers
High-Frequency Oscillator Design for Integrated Transceivers
von: J. van der Tang, Dieter Kasperkovitz, Arthur H.M. van Roermund
PDF ebook
149,79 €
MEMS Vibratory Gyroscopes
MEMS Vibratory Gyroscopes
von: Cenk Acar, Andrei Shkel
PDF ebook
149,79 €