Details

Magnetic Dynamics in Antiferromagnetically-Coupled Ferrimagnets


Magnetic Dynamics in Antiferromagnetically-Coupled Ferrimagnets

The Role of Angular Momentum
Springer Theses

von: Takaya Okuno

96,29 €

Verlag: Springer
Format: PDF
Veröffentl.: 27.10.2020
ISBN/EAN: 9789811591761
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<div>This book presents the theoretical and experimental investigations on antiferromagnetically coupled ferrimagnets and reveals new aspects of ferrimagnetic dynamics in terms of the role of angular momentum. The purpose of this book is to show readers that antiferromagnets/ferrimagnets are useful in spintronic devices in that (1) The non­adiabatic spin­transfer torque in antiferromagnets acts as a staggered magnetic field, which can drive the magnetic domain walls, and (2) The Gilbert damping parameter α, the energy ­dissipation rate associated with the magnetic dynamics of ferrimagnets, is insensitive to temperature in contrast to the conventional understanding that the effective α of ferrimagnets diverges at the angular momentum compensation temperature. This book provides readers with a scientific platform of ferrimagnetic dynamics, which serves as a useful basis for realizing the next ­generation of spintronic devices.&nbsp;&nbsp;</div><div><br></div>
1. Introduction.- 2. Spin-transfer torques for domain wall motion in antiferromagnetically-coupled ferrimagnets.- 3. Gilbert&nbsp; damping&nbsp; parameter&nbsp; of&nbsp; ferrimagnets&nbsp; probed&nbsp; by&nbsp; domain&nbsp; wall motion.- 4. Gilbert&nbsp; damping&nbsp; parameter&nbsp; of&nbsp; ferrimagnets&nbsp; probed&nbsp; by&nbsp; magnetic resonance.- 5. Conclusion.
Takaya Okuno received a Ph.D. in science in March 2020 from Kyoto University, where he engaged in the research of spintronics with his professor, Dr. Teruo Ono.&nbsp;<div>&nbsp;</div>
<div><div>This book presents the theoretical and experimental investigations on antiferromagnetically coupled ferrimagnets and reveals new aspects of ferrimagnetic dynamics in terms of the role of angular momentum. The purpose of this book is to show readers that antiferromagnets/ferrimagnets are useful in spintronic devices in that (1) The non­adiabatic spin­transfer torque in antiferromagnets acts as a staggered magnetic field, which can drive the magnetic domain walls, and (2) The Gilbert damping parameter α, the energy ­dissipation rate associated with the magnetic dynamics of ferrimagnets, is insensitive to temperature in contrast to the conventional understanding that the effective α of ferrimagnets diverges at the angular momentum compensation temperature. This book provides readers with a scientific platform of ferrimagnetic dynamics, which serves as a useful basis for realizing the next ­generation of spintronic devices.&nbsp;&nbsp;</div><div><br></div></div>
Nominated as an outstanding Ph.D. thesis by Kyoto University Introduces the history and current status of the research for magnetic domain wall motion Explains step ­by­ step real-­time detection technique of domain wall motion

Diese Produkte könnten Sie auch interessieren: