Details

Optical Fibre Sensors


Optical Fibre Sensors

Fundamentals for Development of Optimized Devices
IEEE Press Series on Sensors 1. Aufl.

von: Ignacio Del Villar, Ignacio R. Matias

121,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 15.10.2020
ISBN/EAN: 9781119534778
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The most complete, one-stop reference for fiber optic sensor theory and application</b></p> <p><i>Optical Fiber Sensors: Fundamentals for Development of Optimized Devices</i> constitutes the most complete, comprehensive, and up-to-date reference on the development of optical fiber sensors. Edited by two respected experts in the field and authored by experienced engineers and scientists, the book acts as a guide and a reference for an audience ranging from graduate students to researchers and engineers in the field of fiber optic sensors.</p> <p>The book discusses the fundamentals and foundations of fiber optic sensor technology and provides real-world examples to illuminate and illustrate the concepts found within. In addition to the basic concepts necessary to understand this technology, <i>Optical Fiber Sensors</i> includes chapters on:</p> <ul> <li>Distributed sensing with Rayleigh, Raman and Brillouin scattering methods</li> <li>Biomechanical sensing</li> <li>Gas and volatile organic compound sensors</li> <li>Application of nanotechnology to optical fiber sensors</li> <li>Health care and clinical diagnosis</li> <li>And others</li> </ul> <p>Graduate students as well as professionals who work with optical fiber sensors will find this volume to be an indispensable resource and reference.</p>
<p>List of Contributors xv</p> <p>Acknowledgment xix</p> <p>About the Editors xxi</p> <p><b>1 Introduction </b><b>1<br /></b><i>Ignacio R. Matias and Ignacio Del Villar</i></p> <p>References 14</p> <p><b>2 Propagation of Light Through Optical Fibre </b><b>17<br /></b><i>Ignacio Del Villar</i></p> <p>2.1 Geometric Optics 17</p> <p>2.2 Wave Theory 22</p> <p>2.2.1 Scalar Analysis 23</p> <p>2.2.2 Vectorial Analysis 26</p> <p>2.3 Fibre Losses and Dispersion 32</p> <p>2.4 Propagation in Microstructured Optical Fibre 35</p> <p>2.5 Propagation in Specialty Optical Fibres Focused on Sensing 37</p> <p>2.6 Conclusion 45</p> <p>References 46</p> <p><b>3 Optical Fibre Sensor Set-Up Elements </b><b>49<br /></b><i>Minghong Yang and Dajuan Lyu</i></p> <p>3.1 Introduction 49</p> <p>3.2 Light Sources 50</p> <p>3.2.1 Light-Emitting Diodes 52</p> <p>3.2.1.1 Surface Light-Emitting Diode 52</p> <p>3.2.1.2 Side Light-Emitting Diode 52</p> <p>3.2.2 Laser Diode 53</p> <p>3.2.2.1 Single-Mode Laser Diode Structure 54</p> <p>3.2.2.2 Quantum Well Laser Diode 56</p> <p>3.2.3 Superluminescent Diodes (SLD) 56</p> <p>3.2.4 Amplified Spontaneous Emission Sources 59</p> <p>3.2.5 Narrow Line Broadband Sweep Source 62</p> <p>3.2.6 Broadband Sources 62</p> <p>3.3 Optical Detectors 63</p> <p>3.3.1 Basic Principles of Optical Detectors 64</p> <p>3.3.1.1 PN Photodetector 64</p> <p>3.3.1.2 PIN Photodetector 65</p> <p>3.3.1.3 Avalanche Photodiode (APD) 66</p> <p>3.3.2 Main Characteristics of Optical Detectors 66</p> <p>3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength 66</p> <p>3.3.2.2 Quantum Efficiency and Responsiveness 67</p> <p>3.3.2.3 Response Time 68</p> <p>3.3.2.4 Materials and Structures of Semiconductor Photodiodes 69</p> <p>3.3.3 Optical Spectrometers 70</p> <p>3.4 Light Coupling Technology 71</p> <p>3.4.1 Coupling of Fibre and Light Source 71</p> <p>3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres 71</p> <p>3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres 72</p> <p>3.4.2 Multimode Fibre Coupled Through Lens 72</p> <p>3.4.3 Direct Coupling of Fibre and Fibre 73</p> <p>3.5 Fibre-Optic Device 74</p> <p>3.5.1 Fibre Coupler 74</p> <p>3.5.2 Optical Isolator 74</p> <p>3.5.3 Optical Circulator 76</p> <p>3.5.4 Fibre Attenuator 76</p> <p>3.5.5 Fibre Polarizer 76</p> <p>3.5.6 Optical Switch 77</p> <p>3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors 77</p> <p>3.6.1 Intensity-Modulated Optical Fibre Sensing Technology 78</p> <p>3.6.1.1 Reflective Intensity Modulation Sensor 78</p> <p>3.6.1.2 Transmissive Intensity Modulation Sensor 80</p> <p>3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor 80</p> <p>3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor 80</p> <p>3.6.2 Wavelength Modulation Optical Fibre Sensing Technology 81</p> <p>3.6.2.1 Direct Demodulation System 81</p> <p>3.6.2.2 NarrowBand Laser Scanning System 82</p> <p>3.6.2.3 Broadband Source Filter Scanning System 83</p> <p>3.6.2.4 Linear Sideband Filtering Method 84</p> <p>3.6.2.5 Interference Demodulation System 84</p> <p>3.6.3 Phase Modulation Optical Fibre Sensing Technology 86</p> <p>References 87</p> <p><b>4 Basic Detection Techniques </b><b>91<br /></b><i>Daniele Tosi and Carlo Molardi</i></p> <p>4.1 Introduction 91</p> <p>4.2 Overview of Interrogation Methods 93</p> <p>4.3 Intensity-Based Sensors 97</p> <p>4.3.1 Macrobending 97</p> <p>4.3.2 In-Line Fibre Coupling 99</p> <p>4.3.3 Bifurcated Fibre Bundle 100</p> <p>4.3.4 Smartphone Sensors 100</p> <p>4.4 Polarization-Based Sensors 102</p> <p>4.4.1 Pressure and Force Detection 102</p> <p>4.4.2 Lossy Mode Resonance for Refractive Index Sensing 104</p> <p>4.5 Fibre-Optic Interferometers 105</p> <p>4.5.1 Fabry–Pérot Interferometer (FPI)-Based Fibre Sensors 106</p> <p>4.5.1.1 Extrinsic FPI for Pressure Sensing 107</p> <p>4.5.1.2 In-Line FPI for Temperature Sensing 108</p> <p>4.5.2 Mach–Zehnder Interferometer (MZI)-Based Fibre Sensors 109</p> <p>4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors 109</p> <p>4.6 Grating-Based Sensors 111</p> <p>4.6.1 Fibre Bragg Grating (FBG) 111</p> <p>4.6.2 FBG Arrays 113</p> <p>4.6.3 Tilted and Chirped FBG 115</p> <p>4.6.4 Long-Period Grating (LPG) 117</p> <p>4.6.5 FBG Fabrication 118</p> <p>4.7 Conclusions 121</p> <p>References 121</p> <p><b>5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors </b><b>125<br /></b><i>Alayn Loayssa</i></p> <p>5.1 Introduction 125</p> <p>5.2 Fundamentals of Distributed Fibre-Optic Sensors 126</p> <p>5.2.1 Raman DTS 128</p> <p>5.2.2 Brillouin DTSS 129</p> <p>5.3 DFOS in Civil and Geotechnical Engineering 130</p> <p>5.3.1 Bridges 133</p> <p>5.3.2 Tunnels 134</p> <p>5.3.3 Geotechnical Structures 137</p> <p>5.4 DFOS in Hydraulic Structures 141</p> <p>5.5 DFOS in the Electric Grid 143</p> <p>5.6 Conclusions 145</p> <p>References 146</p> <p><b>6 Distributed Sensors in the Oil and Gas Industry </b><b>151<br /></b><i>Arthur H. Hartog</i></p> <p>6.1 The Late Life Cycle of a Hydrocarbon Molecule 153</p> <p>6.1.1 Upstream 154</p> <p>6.1.1.1 Exploration 154</p> <p>6.1.1.2 Well Construction 155</p> <p>6.1.1.3 Formation and Reservoir Evaluation 157</p> <p>6.1.1.4 Production 158</p> <p>6.1.1.5 Production of Methane Hydrates 159</p> <p>6.1.1.6 Well Abandonment 160</p> <p>6.1.2 Midstream: Transportation 160</p> <p>6.1.3 Downstream: Refinery and Distribution 161</p> <p>6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon 161</p> <p>6.2.1 Conditions 161</p> <p>6.2.2 Conveyance Methods 162</p> <p>6.2.2.1 Temporary Installations (Intervention Services) 163</p> <p>6.2.2.2 Permanent Fibre Installations 163</p> <p>6.2.3 Fibre Reliability 165</p> <p>6.2.4 Fibre Types 166</p> <p>6.3 Applications and Take-Up 168</p> <p>6.3.1 Steam-Assisted Recovery; SAGD 168</p> <p>6.3.2 Flow Allocation: Conventional Wells 171</p> <p>6.3.3 Injector Monitoring 174</p> <p>6.3.4 Thermal Tracer Techniques 175</p> <p>6.3.5 Water Flow Between Wells 176</p> <p>6.3.6 Gas-Lift Valves 176</p> <p>6.3.7 Vertical Seismic Profiling (VSP) 177</p> <p>6.3.8 Hydraulic Fracturing Monitoring (HFM) 184</p> <p>6.3.9 Sand Production 185</p> <p>6.4 Summary 186</p> <p>References 186</p> <p><b>7 Biomechanical Sensors </b><b>193<br /></b><i>Cicero Martelli, Jean Carlos Cardozo da Silva, Alessandra Kalinowski, José Rodolfo Galvão, and Talita Paes</i></p> <p>7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review 193</p> <p>7.2 Optical Fibre Sensors: From Experimental Phantoms to <i>In Vivo </i>Applications 198</p> <p>7.2.1 Experimental Phantoms and Models 198</p> <p>7.2.1.1 Joints 199</p> <p>7.2.1.2 Bones and Muscles 199</p> <p>7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) 200</p> <p>7.2.1.4 Prosthesis and Extracorporeal Devices 200</p> <p>7.2.1.5 Sole and Insoles 201</p> <p>7.2.1.6 Smart Fabrics 201</p> <p>7.2.1.7 Blood Vessels 202</p> <p>7.2.1.8 Respiratory Monitoring 203</p> <p>7.2.2 <i>In Vitro </i>203</p> <p>7.2.3 <i>Ex Vivo </i>204</p> <p>7.2.3.1 Joints 204</p> <p>7.2.3.2 Bones and Muscles 205</p> <p>7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) 205</p> <p>7.2.3.4 Blood Vessels 205</p> <p>7.2.3.5 Mechanical Properties of Tissues 207</p> <p>7.2.4 <i>In Vivo </i>207</p> <p>7.2.4.1 Joints 207</p> <p>7.2.4.2 Bones and Muscles 207</p> <p>7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) 208</p> <p>7.2.4.4 Blood Vessels 208</p> <p>7.2.4.5 Respiratory Monitoring 208</p> <p>7.2.5 <i>In Situ </i>208</p> <p>7.2.5.1 Joints 209</p> <p>7.2.5.2 Bones and Muscles 209</p> <p>7.2.5.3 Prostheses and Extracorporeal Devices 210</p> <p>7.2.5.4 Soles and Insoles 210</p> <p>7.2.5.5 Cardiac Monitoring 211</p> <p>7.2.5.6 Respiratory Monitoring 211</p> <p>7.3 FBG Sensors Integrated into Mechanical Systems 213</p> <p>7.3.1 FBG Sensors Glued with Polymer 214</p> <p>7.3.2 Polymer-Integrated FBG Sensor 215</p> <p>7.3.3 Smart Fibre Reinforced Polymer (SFRP) 218</p> <p>7.4 Future Perspective 222</p> <p>Acknowledgment 223</p> <p>References 224</p> <p><b>8 Optical Fibre Chemical Sensors </b><b>239<br /></b><i>T. Hien Nguyen and Tong Sun</i></p> <p>8.1 Introduction 239</p> <p>8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing 240</p> <p>8.2.1 Principle of Chemical Sensor Response 240</p> <p>8.2.2 Absorption-Based Sensors 242</p> <p>8.2.3 Luminescence-Based Sensors 243</p> <p>8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors 245</p> <p>8.3 Sensor Design and Applications 247</p> <p>8.3.1 Optical Fibre pH Sensors 247</p> <p>8.3.1.1 Principle of Fluorescence-Based pH Measurements 248</p> <p>8.3.1.2 pH Sensor Design 249</p> <p>8.3.1.3 Set-Up of a pH Sensor System 253</p> <p>8.3.1.4 Evaluation of the pH Sensor Systems 254</p> <p>8.3.1.5 Comments 260</p> <p>8.3.2 Optical Fibre Mercury Sensor 261</p> <p>8.3.2.1 Sensor Design and Mechanism 262</p> <p>8.3.2.2 Evaluation of the Mercury Sensor System 265</p> <p>8.3.2.3 Comments 271</p> <p>8.3.3 Optical Fibre Cocaine Sensor 271</p> <p>8.3.3.1 Sensing Methodology 272</p> <p>8.3.3.2 Design and Fabrication of a Cocaine Sensor System 273</p> <p>8.3.3.3 Evaluation of the Cocaine Sensor System 275</p> <p>8.3.3.4 Comments 280</p> <p>8.4 Conclusions and Future Outlook 281</p> <p>Acknowledgements 282</p> <p>References 282</p> <p><b>9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends </b><b>289<br /></b><i>Armando Ricciardi, Marco Consales, Marco Pisco, and Andrea Cusano</i></p> <p>9.1 Introduction 289</p> <p>9.2 A View Back 292</p> <p>9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications 293</p> <p>9.3.1 Direct Approaches 294</p> <p>9.3.2 Indirect Approaches 301</p> <p>9.3.3 Self-Assembly 305</p> <p>9.3.4 Smart Materials Integration 307</p> <p>9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications 309</p> <p>9.5 Conclusions 317</p> <p>References 320</p> <p><b>10 From Refractometry to Biosensing with Optical Fibres </b><b>331<br /></b><i>Francesco Chiavaioli, Ambra Giannetti, and Francesco Baldini</i></p> <p>10.1 Basic Sensing Concepts and Parameters for OFSs 332</p> <p>10.1.1 Parameters of General Interest 335</p> <p>10.1.1.1 Uncertainty 335</p> <p>10.1.1.2 Accuracy and Precision 335</p> <p>10.1.1.3 Sensor Drift and Fluctuations 336</p> <p>10.1.1.4 Repeatability 336</p> <p>10.1.1.5 Reproducibility 336</p> <p>10.1.1.6 Response Time 336</p> <p>10.1.2 Parameters Related to Volume RI Sensing 337</p> <p>10.1.2.1 Refractive Index Sensitivity 337</p> <p>10.1.2.2 Resolution 338</p> <p>10.1.2.3 Figure of Merit (FOM) 339</p> <p>10.1.3 Parameters Related to Surface RI Sensing 339</p> <p>10.1.3.1 Sensorgram and Calibration Curve 340</p> <p>10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) 341</p> <p>10.1.3.3 Specificity (or Selectivity) 345</p> <p>10.1.3.4 Regeneration (or Reusability) 345</p> <p>10.2 Optical Fibre Refractometers 347</p> <p>10.2.1 Optical Interferometers 348</p> <p>10.2.2 Grating-Based Structures 348</p> <p>10.2.3 Other Resonance-Based Structures 350</p> <p>10.3 Optical Fibre Biosensors 352</p> <p>10.3.1 Immuno-Based Biosensors 353</p> <p>10.3.2 Oligonucleotide-Based Biosensors 354</p> <p>10.3.3 Whole Cell/Microorganism-Based Biosensors 357</p> <p>10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives 360</p> <p>References 361</p> <p><b>11 Humidity, Gas, and Volatile Organic Compound Sensors </b><b>367<br /></b><i>Diego Lopez-Torres and César Elosua</i></p> <p>11.1 Introduction 367</p> <p>11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection 368</p> <p>11.3 Sensing Materials 370</p> <p>11.3.1 Organic Chemical Dyes 370</p> <p>11.3.2 Metal–Organic Framework (MOF) Materials 372</p> <p>11.3.3 Metallic Oxides 374</p> <p>11.3.4 Graphene 378</p> <p>11.4 Detection of Single Gases 379</p> <p>11.5 Relative Humidity Measurement 383</p> <p>11.6 Devices for VOC Sensing and Identification 384</p> <p>11.7 Artificial Systems for Complex Mixtures of VOCs: Optoelectronic Noses 387</p> <p>11.8 Conclusions 391</p> <p>References 392</p> <p><b>12 Interaction of Light with Matter in Optical Fibre Sensors: A Biomedical Engineering Perspective </b><b>399<br /></b><i>Sillas Hadjiloucas</i></p> <p>12.1 Introduction 399</p> <p>12.2 Energy Content in Light and Its Effect in Chemical Processes 399</p> <p>12.3 Relevance of Wien’s Law to Physicochemical Processes 402</p> <p>12.4 Absorption of Light Molecules 403</p> <p>12.5 The Role of Electron Spin and State Multiplicity in Spectroscopy 404</p> <p>12.6 Molecular Orbitals, Bond Conjugation, and Photoisomerization 406</p> <p>12.7 De-excitation Processes Through Competing Pathways: Their Effect on Lifetimes and Quantum Yield 407</p> <p>12.8 Energy Level Diagrams and Vibrational Sublevels 412</p> <p>12.9 Distinction Between Absorption and Action Spectra 413</p> <p>12.10 Light Scattering Processes 414</p> <p>12.10.1 Elastic Scattering 414</p> <p>12.10.2 Inelastic Scattering 416</p> <p>12.11 Induction of Non-linear Optical Processes 418</p> <p>12.12 Concentrating Fields to Maximize Energy Exchange in the Measurement Process Using Slow Light 419</p> <p>12.12.1 Slow Light Using Atomic Resonances and Electromagnetically Induced Transparency 419</p> <p>12.12.2 Slow Light Using Photonic Resonances 424</p> <p>12.13 Field Enhancement and Improved Sensitivity Through Whispering Gallery Mode Structures 427</p> <p>12.14 Emergent Technological Trends Facilitating Multi-parametric Interactions of Light with Matter 429</p> <p>12.14.1 Integration of Optical Fibres with Microfluidic Devices and MEMS 429</p> <p>12.14.2 Pump–Probe Spectroscopy 430</p> <p>12.15 Prospects of Molecular Control Using Femtosecond Fibre Lasers 430</p> <p>12.15.1 Femtosecond Pulse Shaping 430</p> <p>12.15.2 New Opportunities for Coherent Control of Molecular Processes 432</p> <p>12.15.3 Developments in Evolutionary Algorithms for Molecular Control 434</p> <p>References 436</p> <p><b>13 Detection in Harsh Environments </b><b>441<br /></b><i>Kamil Kosiel and Mateusz Śmietana</i></p> <p>13.1 Introduction 441</p> <p>13.2 Optical Fibre Sensors for Harsh Environments 442</p> <p>13.3 Need for Harsh Environment Sensing Based on Optical Fibres 443</p> <p>13.4 General Requirements for Harsh Environment OFSs 449</p> <p>13.5 Silica Glass Optical Fibres for Harsh Environment Sensing 451</p> <p>13.6 Polymer Optical Fibres for Harsh Environment Sensing 461</p> <p>13.7 Chalcogenide Glass and Polycrystalline Silver Halide Optical Fibres for Harsh Environment Sensing 464</p> <p>13.8 Monocrystalline Sapphire Optical Fibres for Harsh Environment Sensing 467</p> <p>13.9 Future Trends in Optical Fibre Sensing 469</p> <p>References 470</p> <p><b>14 Fibre-Optic Sensing: Past Reflections and Future Prospects </b><b>477<br /></b><i>Brian Culshaw and Marco N. Petrovich</i></p> <p>14.1 Introductory Comments 477</p> <p>14.2 Reflections on Achievements to Date 478</p> <p>14.3 Photonics: How is It Changing? 484</p> <p>14.4 Some Future Speculation 486</p> <p>14.4.1 Photonic Integrated and Plasmonic Circuits 487</p> <p>14.4.2 Metamaterials in Sensing 490</p> <p>14.4.3 More Variations on the Nano Story 492</p> <p>14.4.4 Improving the Signal-to-Noise Ratio 493</p> <p>14.4.5 Quantum Sensing, Entanglement, and the Like 494</p> <p>14.4.6 The Many Prospects in Fibre Design and Fabrication 495</p> <p>14.4.7 Technologies Other than Photonics 500</p> <p>14.4.8 Societal Aspirations in Sensor Technology 501</p> <p>14.4.9 The Future and a Quick Look at the Sensing Alternatives 501</p> <p>14.4.10 So What Has Fibre Sensing Achieved to Date 503</p> <p>14.5 Concluding Observations 504</p> <p>References 504</p> <p>Index 511</p>
<p><b>IGNACIO DEL VILLAR, PhD,</b> is an Associate Professor in the Electrical, Electronic and Communications Engineering Department at the Public University of Navarra, Spain, where he teaches on electronics and industrial communications. He is a member of the IEEE and an Associate Editor of different journals. In addition, he has participated in multiple research projects and co-authored more than 150 papers, conferences, and book chapters related to fibre-optic sensors. <p><b>IGNACIO R. MATIAS, PhD,</b> is the Scientific Director of the Institute of Smart Cities and Professor of the Electrical, Electronic and Communications Department at the Public University of Navarra, Spain. He was one of the Associate Editors who founded the IEEE Sensors Journal, promoting fibre optic sensors since then through conferences, special issues, awards, books, etc. He has coauthored more than 500 book chapters, journal and conference papers related to optical fibre sensors. He is currently member-at-large at the IEEE Sensors Council AdCom.
<p><b>The most complete, one-stop reference for fibre optic sensor theory and applications</b> <p><i>Optical Fibre Sensors: Fundamentals for Development of Optimized Devices</i> constitutes the most complete, comprehensive, and up-to-date reference on the development of optical fibre sensors. Edited by two respected experts in the field and authored by experienced engineers and scientists, the book acts as a guide and a reference for an audience ranging from graduate students to researchers and engineers in the field of fibre optic sensors. <p>The book discusses the fundamentals and foundations of fibre optic sensor technology and provides real-world examples to illuminate and illustrate the concepts found within. In addition to the basic concepts necessary to understand this technology, <i>Optical Fibre Sensors</i> includes chapters on: <ul> <li>Distributed sensing with Rayleigh, Raman and Brillouin scattering methods</li> <li>Biomechanical sensing</li> <li>Gas and volatile organic compound sensors</li> <li>Application of nanotechnology to optical fibre sensors</li> <li>Health care and clinical diagnosis</li> </ul> <p>Graduate students as well as professionals who work with optical fibre sensors will find this volume to be an indispensable resource and reference.

Diese Produkte könnten Sie auch interessieren:

Ground Penetrating Radar
Ground Penetrating Radar
von: Mohammed Serhir, Dominique Lesselier
EPUB ebook
142,99 €
Computational Imaging for Scene Understanding
Computational Imaging for Scene Understanding
von: Takuya Funatomi, Takahiro Okabe
EPUB ebook
142,99 €