Details

Springer Handbook of Atomic, Molecular, and Optical Physics


Springer Handbook of Atomic, Molecular, and Optical Physics, Springer Handbook of Atomic, Molecular, and Optical Physics


Springer Handbooks 2nd ed. 2006

von: Gordon W. F. Drake

266,43 €

Verlag: Springer
Format: PDF
Veröffentl.: 05.02.2007
ISBN/EAN: 9780387263083
Sprache: englisch
Anzahl Seiten: 1506

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field.
92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references).
Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines.
Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants.
A fully-searchable CD- ROM version of the contents accompanies the handbook.
This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines.
Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field. Relevant diagrams, graphs, and tables of data are provided throughout the text.
Substantially updated and expanded since the 1996 edition and published in conjunction with the 2005 World Year of Physics (commemorating Einstein’s 1905 "miracle year"), it contains several entirely new chapters covering current areas of great research interest, such as Bose – Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully searchable CD-ROM version of the contents accompanies the handbook.
Units and Constants.- Part A Mathematical Methods: Angular Momentum Theory.- Group Theory for Atomic Shells.- Dynamical Groups.- Perturbation Theory.- Second Quantization.- Density Matrices.- Computational Techniques.- Hydrogenic Wave Functions.- Part B Atoms: Atomic Spectroscopy.- High Precision Calculations for Helium.- Atomic Multipoles.- Atoms in Strong Fields.- Rydberg Atoms.- Rydberg Atoms in Strong Static Fields.- Hyperfine Structure.- Precision Oscillator Strength and Lifetime Measurements.- Ion Beam Spectroscopy.- Line Shapes and Radiation Transfer.- Thomas – Fermi and Other Density-Functional Theories.- Atomic Structure: Multiconfiguration Hartree – Fock Theories.- Relativistic Atomic Structure.- Many-Body Theory of Atomic Structure and Processes.- Photoionization of Atoms.- Autoionization.- Green's Functions of Field Theory.- Quantum Electrodynamics.- Tests of Fundamental Physics.- Parity Nonconserving Effects in Atoms.- Atomic Clocks and Constraints on Variations of Fundamental Constants.- Molecular Structure.- Molecular Symmetry and Dynamics.- Radiative Transition Probabilities.- Molecular Photodissociation.- Time-Resolved Molecular Dynamics.- Nonreactive Scattering.- Gas Phase Reactions.- Gas Phase Ionic Reactions.- Clusters.- Infrared Spectroscopy.- Laser Spectroscopy in the Submillimeter and Far-Infrared Region.- Spectroscopic Techniques: Lasers.- Spectroscopic Techniques: Cavity-Enhanced Methods.- Spectroscopic Techniques: Ultraviolet.- Part C Scattering Theory: Elastic Scattering: Classical, Quantal, and Semiclassical.- Orientation and Alignment in Atomic and Molecular Collisions.- Electron-Atom, Electron-Ion, and Electron-Molecule Collisions.- Positron Collisions.- Adiabatic and Diabatic Collision Processes at Low Energies.- Ion –Atom and Atom – Atom Collisions.- Ion – Atom Charge Transfer Reactions at Low Energies.- Continuum Distorted-Wave and Wannier Methods.- Ionization in High Energy Ion – Atom Collisions.- Electron – Ion and Ion – Ion Recombination.- Dielectronic Recombination.- Rydberg Collisions: Binary Encounter, Born and Impulse Approximations.- Mass Transfer at High Energies: Thomas Peak.- Classical Trajectory and Monte Carlo Techniques.- Collisional Broadening of Spectral Lines.- Part D Scattering Experiments: Photodetachment.- Photon – Atom Interactions: Low Energy.- Photon – Atom Interactions: Intermediate Energies.- Electron – Atom and Electron – Molecule Collisions.- Ion – Atom Scattering Experiments: Low Energy.- Ion – Atom Collisions:High Energy.- Reactive Scattering.- Ion – Molecule Reactions.- Part E Quantum Optics: Light – Matter Interaction.- Absorption and Gain Spectra.- Laser Principles.- Types of Lasers.- Nonlinear Optics.- Coherent Transients.- Multiphoton and Strong-Field Processes.- Cooling and Trapping.- Quantum Degenerate Gases: Bose – Einstein Condensation.- De Broglie Optics.- Quantized Field Effects.- Entangled Atoms and Fields: Cavity QED.- Quantum Optical Tests of the Foundations of Physics.- Quantum Information.- Part F Applications: Applications of Atomic and Molecular Physics to Astrophysics.- Comets.- Aeronomy.- Applications of Atomic and Molecular Physics to Global Change.- Atoms in Dense Plasmas.- Conduction of Electricity in Gases.- Applications to Combustion.- Surface Physics.- Interface with Nuclear Physics.- Charged-Particle – Matter Interactions.- Radiation Physics.-
About the Authors.- Subject Index
Gordon W F Drake is a Professor of Physics at the University of Windsor, Ontario, Canada. He was awarded the 1994 Gold Medal for Achievement in Physics by the Canadian Association of Physicists and has chaired both the Division of Atomic, Molecular, and Optical Physics of The American Physical Society, as well as the IUPAP Commission on Atomic, Molecular, and Optical Physics. Dr. Drake is a Fellow of the Royal Society of Canada, The American Physical Society, and the British Institute of Physics.
This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines.
Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field. Relevant diagrams, graphs, and tables of data are provided throughout the text.
Substantially updated and expanded since the 1996 edition and published in conjunction with the 2005 World Year of Physics (commemorating Einstein’s 1905 "miracle year"), it contains several entirely new chapters covering current areas of great research interest, such as Bose – Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully searchable CD-ROM version of the contents accompanies the handbook.
Key Topics
Physical Units and Constants

Mathematical Methods

Atoms

Molecules
Scattering Theory and Experiment
Quantum Optics

Applications


Features

Covers basic theory, methods, and techniques

Contains most frequently used formulae and relationships

Incorporates the latest CODATA values for fundamental physical constants

Contains 288 two-color illustrations and over 100 comprehensive tables

Up-to-date approved referencesParts and chapters with summaries, detailed index and fully searchable CD-ROM guarantee quick access to data and links to other sources
This indispensable resource is a single volume to bridge the many interrelated disciplines of atomic, molecular, and optical (AMO) physics
Along with a summary of key ideas, techniques, and results, many chapters offer you diagrams of apparatus, graphs, and tables of data
From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines
Available on CD- ROM
This Springer Handbook comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques, and results of the field. Its 90 chapters written by about 120 authors all leaders in their repsective disciplines, together with a guide to the primary research literature. It has been carefully edited to ensure a uniform coverage and style, with extensive cross-references. It is intended to be both a source of information and inspiration for graduate students and other researchers new to the field. Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
 
 

Diese Produkte könnten Sie auch interessieren:

Physical and chemical principles of nanotechnology
Physical and chemical principles of nanotechnology
von: Naveen Kumar J R, P. Prasad
PDF ebook
34,99 €
Excursions in Ill-Condensed Quantum Matter
Excursions in Ill-Condensed Quantum Matter
von: Adhip Agarwala
PDF ebook
103,52 €